References:
[1] M. Iacono, M. Gribaudo, J. Kołodziej, F. Pop, Modeling and evaluation of highly complex computer systems architectures, J. Comput. Sci. 22 (2017) 126–130.
[2] A. Alkamil, D.G. Perera, Towards dynamic and partial reconfigurable hardware architectures for cryptographic algorithms on embedded devices, IEEE Access 8 (2020) 221720–221742.
[3] V.S. Vranjkovi´c, R.J. Struharik, L.A. Novak, Reconfigurable hardware for machine learning applications, J. Circuits Syst. Comput. 24 (2015), 1550064.
[4] M.P. V´estias, A survey of convolutional neural networks on edge with reconfigurable computing, Algorithms 12 (2019) 154.
[5] J. Hoozemans, J. Peltenburg, F. Nonnemacher, A. Hadnagy, Z. Al-Ars, H.P. Hofstee, FPGA acceleration for big data analytics: challenges and opportunities, IEEE Circuits Syst. Mag. 21 (2021) 30–47.
[6] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, S. Wei, A survey of coarse-grained reconfigurable architecture and design: taxonomy, challenges, and applications, ACM Comput. Surv. (CSUR) 52 (6) (2019) 1–39.
[7] A. Podobas, K. Sano, S. Matsuoka, A survey on coarse-grained reconfigurable architectures from a performance perspective, IEEE Access 8 (2020) 146719–146743.
[8] K. Vipin, S.A. Fahmy, FPGA dynamic and partial reconfiguration: a survey of architectures, methods, and applications, ACM Comput. Surv. (CSUR) 51 (2018) 1–39.
[9] H. Kchaou, Z. Kechaou, A.M. Alimi, A PSO task scheduling and IT2FCM fuzzy data placement strategy for scientific cloud workflows, J. Comput. Sci. 64 (2022), 101840.
[10] A. Yoosefi, H.R. Naji, A clustering algorithm for communication-aware scheduling of task graphs on multi-core reconfigurable systems, IEEE Trans. Parallel Distrib. Syst. 28 (10) (2017) 2718–2732.
[11] H. Chniter, O. Mosbahi, M. Khalgui, M. Zhou, Z. Li, Improved multi-core real-time task scheduling of reconfigurable systems with energy constraints, IEEE Access 8 (2020) 95698–95713.
[12] Z. Zhu, J. Zhang, J. Zhao, J. Cao, D. Zhao, G. Jia, Q. Meng, A hardware and software task-scheduling framework based on CPU+ FPGA heterogeneous architecture in edge computing, IEEE Access 7 (2019) 148975–148988.
[13] T. Marconi, Online scheduling and placement of hardware tasks with multiple variants on dynamically reconfigurable field-programmable gate arrays, Comput. Electr. Eng. 40 (2014) 1215–1237.
[14] A. Silva, L.C. Coelho, M. Darvish, Quadratic assignment problem variants: a survey and an effective parallel memetic iterated tabu search, Eur. J. Oper. Res. 292 (2021) 1066–1084.
[15] Z. Guan, J.S. Wong, S. Chaudhuri, G. Constantinides, P.Y. Cheung, A two-stage variation-aware placement method for FPGAs exploiting variation maps classification, in: Proceedings of the Twenty Second International Conference on Field Programmable Logic and Applications (FPL), 2012, 519–522.
[16] R.Z. Chochaev, P.I. Frolova, Initial placement algorithms for island-style FPGAs. in: Proceedings of the Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus, 2022, pp. 586–589.
[17] V.I. Enns, S.V. Gavrilov, R.Z. Chochaev, Automatic FPGA placement configuration for customer designs, Russ. Microelectron. 51 (2022) 579–584.
[18] G. Chen, C.W. Pui, W.K. Chow, K.C. Lam, J. Kuang, E.F. Young, B. Yu, RippleFPGA: routability-driven simultaneous packing and placement for modern FPGAs, IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 37 (2017) 2022–2035.
[19] S.A. Chin, J.H. Anderson, An architecture-agnostic integer linear programming approach to CGRA mapping, in; Proceedings of the Fifty Fifth Annual Design Automation Conference, 2018, 1-6.
[20] M.J. Walker, J.H. Anderson, Generic connectivity-based CGRA mapping via integer linear programming. in: Proceedings of the Twenty Seventh Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM, 2019, pp. 65–73.
[21] S. Yang, S. Le Nours, M.M. Real, S. Pillement, 0–1 ILP-based run-time hierarchical energy optimization for heterogeneous cluster-based multi/many-core systems, J. Syst. Archit. 116 (2021), 102035.
[22] H. Zhang, X. Wang, KGT: an application mapping algorithm based on kernighan–lin partition and genetic algorithm for WK-recursive NoC architecture, Int. Conf. Intell. Comput. (2021) 86–101.75
[23] T. Kojima, N.A.V. Doan, H. Amano, GenMap: a genetic algorithmic approach for optimizing spatial mapping of coarse-grained reconfigurable architectures, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28 (11) (2020) 2383–2396.
[24] M. El-Abd, H. Hassan, M. Anis, M.S. Kamel, M. Elmasry, Discrete cooperative particle swarm optimization for FPGA placement, Appl. Soft Comput. 10 (1) (2010) 284–295.
[25] L. Zhou, D. Liu, B. Zhang, H. Liu, Ant colony optimization for application mapping in coarse-grained reconfigurable array, Int. Symp. . Appl. Reconfigurable Comput. (2013) 219. -219.
[26] J. Yuan, J. Chen, L. Wang, X. Zhou, Y. Xia, J. Hu, ARBSA: Adaptive range-based simulated annealing for FPGA placement, IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 38 (2018) 2330–2342.
[27] S.A. Chin, N. Sakamoto, A. Rui, J. Zhao, J.H. Kim, Y. Hara-Azumi, J. Anderson, CGRA-ME: A unified framework for CGRA modelling and exploration. in: Proceedings of the Twenty Eightth International Conference on Application- specific Systems, Architectures and Processors, ASAP, 2017, pp. 184–189.
[28] K.E. Murray, O. Petelin, S. Zhong, J.M. Wang, M. Eldafrawy, J.P. Legault, E. Sha, A. G. Graham, J. Wu, M.J. Walker, H. Zeng, Vtr 8: high-performance cad and customizable fpga architecture modelling, ACM Trans. Reconfigurable Technol. Syst. (TRETS) 13 (2020) 1–55.
[29] S.M. Mohtavipour, H.S. Shahhoseini, A quad-form clustered mapping approach for large-scale applications of reconfigurable computing systems, Comput. Electr. Eng. 97 (2022), 107637.
[30] S.M. Mohtavipour, H.S. Shahhoseini, A link-elimination partitioning approach for application graph mapping in reconfigurable computing systems, J. Supercomput. 76 (2020) 726–754.
[31] S.M. Mohtavipour, H.S. Shahhoseini, A Low-Cost Distributed Mapping for Large-Scale Applications of Reconfigurable Computing Systems. in: Proceedings of the Tenty Fifth International Computer Conference, Computer Society of Iran, CSICC, 2020, pp. 1–6.
[32] F. Galea, S. Carpov, L. Zaourar, Multi-start simulated annealing for partially-reconfigurable FPGA floorplanning, IEEE Int. Parallel Distrib. Process. Symp. . Workshops (IPDPSW) (2018) 1335–1338.
[33] S. Yin, D. Liu, L. Sun, L. Liu, S. Wei, DFGNet: mapping dataflow graph onto CGRA by a deep learning approach, Int. Symp. Circuits Syst. (ISCAS) (2017) 1–4.
[34] A. Al-Hyari, A. Shamli, T. Martin, S. Areibi ,G. Grewal, An adaptive analytic FPGA placement framework based on deep-learning, in: Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, 2020, 3–8, .
[35] D. Liu, S. Yin, G. Luo, J. Shang, L. Liu, S. Wei, Y. Feng, S. Zhou, Data-flow graph mapping optimization for CGRA with deep reinforcement learning, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38 (2018) 2271–2283.
[36] M.A. Elgammal, K.E. Murray, V. Betz, RLPlace: using reinforcement learning and smart perturbations to optimize FPGA placement, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41 (2021) 2532–2545.
[37] Zhang, J., Deng, F. , Yang, X., FPGA placement optimization with deep reinforcement learning in: Proceedings of the Second International Conference on Computer Engineering and Intelligent Control (ICCEIC), 73–76, 2021.
[38] A. Mirhoseini, A. Goldie, M. Yazgan, J.W. Jiang, E. Songhori, S. Wang, Y.J. Lee, E. Johnson, O. Pathak, A. Nazi, J. Pak, A graph placement methodology for fast chip design, Nature 594 (2021) 207–212.
[39] D.S. Lopera, L. Servadei, G.N. Kiprit, S. Hazra, R. Wille, W. Ecker, A survey of graph neural networks for electronic design automation. in: Proceedings of the ACM/IEEE Third Workshop on Machine Learning for CAD (MLCAD), 2021, pp. 1–6.
[40] Z. Li, D. Wijerathne, X. Chen, A. Pathania, T. Mitra, Chordmap: automated mapping of streaming applications onto cgra, IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 41 (2021) 306–319.
[41] J.W. Yoon, A. Shrivastava, S. Park, M. Ahn, Y. Paek, A graph drawing based spatial mapping algorithm for coarse-grained reconfigurable architectures, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17 (2009) 1565–1578.
[42] R. Ferreira, L. Rocha, A. Santos, J. Nacif, S. Wong, L. Carro, A run-time graph-based polynomial placement and routing algorithm for virtual fpgas, in: Proceedings of the Twenty Third International Conference on Field programmable Logic and Applications, 2013, 1–8.
[43] M. Canesche, M. Menezes, W. Carvalho, F.S. Torres, P. Jamieson, J.A. Nacif, R. Ferreira, Traversal: a fast and adaptive graph-based placement and routing for cgras, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40 (2020) 1600–1612.
[44] M. Canesche, W. Carvalho, L. Reis, M. Oliveira, S. Magalhaes, P. Jamieson, J. M. Nacif, R. Ferreira, You only traverse twice: a YOTT placement, routing, and timing approach for CGRAs, ACM Trans. Embed. Comput. Syst. (TECS) 20 (2021) 1–25.
[45] L. Chen, T. Mitra, Graph minor approach for application mapping on cgras, ACM Trans. Reconfigurable Technol. Syst. (TRETS) 7 (3) (2014) 1–25.
[46] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv Prepr. arXiv 1609 (2016) 02907.
[47] S.K. Maurya, X. Liu, T. Murata, Simplifying approach to node classification in Graph Neural Networks, J. Comput. Sci. 62 (2022), 101695.
[48] W. Turek, J. Stypka, D. Krzywicki, P. Anielski, K. Pietak, A. Byrski, M. Kisiel-Dorohinicki, Highly scalable erlang framework for agent-based metaheuristic computing, J. Comput. Sci. 17 (2016) 234–248.
[49] H. Daryanavard, M. Eshghi, A. Jahanian, A fast placement algorithm for embedded just-in-time reconfigurable extensible processing platform, J. Supercomput. 71 (2015) 121–143.
[50] R. Collier, C. Fobel, L. Richards, G. Grewal, A formal and empirical analysis of recombination for genetic algorithm-based approaches to the FPGA placement problem, 25th IEEE Can. Conf. Electr. Comput. Eng. (CCECE) (2012) 1–6.
[51] S.A. Chin, N. Sakamoto, A. Rui, J. Zhao, J.H. Kim, Y. Hara-Azumi, J. Anderson, CGRA-ME: a unified framework for CGRA modelling and exploration. in: Proceedings of the Twenty Eighth International Conference on Application-specific Systems, Architectures and Processors, ASAP, 2017, pp. 184–189.
[52] F. Bouwens, M. Berekovic, B.D. Sutter, G. Gaydadjiev, Architecture enhancements for the ADRES coarse-grained reconfigurable array, Int. Conf. High. Perform. Embed. Archit. Compil. (2008) 66–81.
[53] Data61, C., StellarGraph Machine Learning Library, 2018.
[54] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, V. Prasanna, Accurate, efficient and scalable training of Graph Neural Networks, J. Parallel Distrib. Comput. 147 (2021) 166–183.
[55] K. Hornik, I. Feinerer, M. Kober, C. Buchta, Spherical k-means clustering, J. Stat. Softw. 50 (2012) 1–22.
[56] Perozzi, B., Al-Rfou, R. , Skiena, S., Deepwalk: online learning of social representations, in: Proceedings of the Twentieth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710, 2014.
[57] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, Adv. Neural Inf. Process. Syst. 14 (2001).
[58] S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph representations, Proc. AAAI Conf. Artif. Intell. 30 (2016).
[59] J. Weston, F. Ratle, R. Collobert, Deep learning via semi-supervised embedding, in: Proceedings of the Twenty Fifth International Conference on Machine Learning, 2008, 1168–1175.
[60] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Adv. Neural Inf. Process. Syst. 29 (2016).
[61] F.M. Bianchi, D. Grattarola, C. Alippi, Spectral clustering with graph neural networks for graph pooling, Int. Conf. Mach. Learn. (2020) 874–883.
[62] Z. Li, D. Wu, D. Wijerathne, T. Mitra, Lisa: graph neural network based portable mapping on spatial accelerators. in: Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2022, pp. 444–459.
[63] X. Kong, Y. Huang, J. Zhu, X. Man, Y. Liu, C. Feng, P. Gou, M. Tang, S. Wei, L. Liu, MapZero: mapping for coarse-grained reconfigurable architectures with reinforcement learning and monte-carlo tree search in: Proceedings of the Fiftieth Annual International Symposium on Computer Architecture, 2023, 1–14.
[64] Gurobi Optimization, L.L.C., Gurobi Optimizer Reference Manual, 2023, 〈https://www.gurobi.com〉.
[65] Fey, M. , Lenssen, J.E., Fast graph representation learning with PyTorch Geometric arXiv preprint arXiv:1903.02428, 2019.
[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, Pytorch: an imperative style, high-performance deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).
[67] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, TensorFlow: a system for large-scale machine learning, in: Proceedings of the Twelfth USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, 265–283.
Cite this paper as:
Mohtavipour, S.M. and Shahhoseini, H.S., 2023. GCN-RA: A Graph Convolutional Network-based Resource Allocator for Reconfigurable Systems. Journal of Computational Science, p.102178.