References:
[1] G. Burel, H. Saif, M. Fernandez and H. Alani, "On semantics and deep learning for event detection in crisis situations", 2017.
[2] N. Amirafshar, A. S. B, H. S. Shahhoseini and N. Taherinejad, "An approximate carry disregard multiplier with improved mean relative error distance and probability of correctness",
Euromicro Conference on Digital Systems Design 2022 (DSD2022), pp. 1-7, 2022.
[3] W. Wang, Y. Yang, X. Wang, W. Wang and J. Li, "Development of convolutional neural network and its application in image classification: a survey",
Optical Engineering, vol. 58, no. 4, pp. 040901, 2019.
[4] S. E. Fatemieh, M. R. Reshadinezhad and N. TaheriNejad, "Approximate in-memory computing using memristive imply logic and its application to image processing",
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5, 2022.
[5] N. TaheriNejad and S. Shakibhamedan, "Energy-aware adaptive approximate computing for deep learning applications",
2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 328-328, 2022.
[6] S. E. Fatemieh, M. R. Reshadinezhad and N. TaheriNejad, "Fast and compact serial imply-based approximate full adders applied in image processing",
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 13, no. 1, pp. 175-188, 2023.
[7] N. Amirafshar, A. S. B, H. S. Shahhoseini and N. Taherinejad, "Carry disregard approximate multipliers", pp. 1-14, 2023.
[8] I. Elsadek and E. Y. Tawfik, "RISC-V resource-constrained cores: A survey and energy comparison",
2021 19th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 1-5, 2021.
[9] R. Molina-Robles, A. Arnaud, M. Miguez, J. Gak, A. Chacón-Rodríguez and R. García-Ramírez, "An energy consumption benchmark for a low-power risc-v core aimed at implantable medical devices",
IEEE Embedded Systems Letters, 2022.
[10] H. E. Ghor, M. Chetto and R. E. Osta, "Multiprocessor real-time scheduling for wireless sensors powered by renewable energy sources",
2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp. 1-6, 2018.
[11] M. Chetto, "Optimal scheduling for real-time jobs in energy harvesting computing systems",
IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 2, pp. 122-133, 2014.
[12] A. S. Baroughi, S. Huemer, H. S. Shahhoseini and N. TaheriNejad, "AxE: An approximate-exact multi-processor system-on-chip platform",
2022 25th Euromicro Conference on Digital System Design (DSD), pp. 60-66, 2022.
[13] I. Felzmann, J. F. Filho and L. Wanner, "Risk-5: Controlled approximations for RISC-V",
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 4052-4063, 2020.
[14] T. Trevisan J et al., "Approxrisc: An approximate computing infrastructure for RISC-V",
RISC-V Workshop in Barcelona, May 2018.
[15] N. A. Said et al., "FPU bit-width optimization for approximate computing: A non-intrusive approach",
2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, 2020.
[16] J. D. Lin, A. M. K. Cheng and G. Gercek, "Partitioning real-time tasks with replications on multiprocessor embedded systems",
IEEE Embedded Systems Letters, vol. 8, no. 4, pp. 89-92, 2016.
[17] J. Lin and A. M. Cheng, "Real-time task assignment with replication on multiprocessor platforms",
2009 15th International Conference on Parallel and Distributed Systems, pp. 399-406, 2009.
[18] M. K. Papamichael and J. C. Hoe, Connect: Re-examining conventional wisdom for designing NOCs in the context of FPGAs, Association for Computing Machinery, 2012.
[19] C. Wolf,
Yosyshq/picorv32: Picorv32 - a size-optimized risc-v cpu, [online] Available: https://github.com/YosysHQ/picorv32.
[20]
Evoapproxlib — approximate circuits library — 8-bit unsigned multiplier, [online] Available: https://ehw.fit.vutbr.cz/evoapproxlib/.
[21] V. Mrazek et al., "Evoapprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods",
DATE 2017, pp. 258-261, 2017.
Cite this paper as:
S. Huemer, A. S. Baroughi, H. S. Shahhoseini and N. TaheriNejad, "Approximation-aware Task Partitioning on an Approximate-Exact MPSoC (AxE)," 2023 IEEE Nordic Circuits and Systems Conference (NorCAS), Aalborg, Denmark, 2023, pp. 1-7, doi: 10.1109/NorCAS58970.2023.10305464.